Algae Scrubber Basics Summary Part 1: Page 3 of 10
Planning your Scrubber
There are 2 basic ways of supplying flow to a scrubber: directly from the overflow, or from a dedicated pump.
The above diagram does not illustrate the top-of-tank scrubber, which would apply to someone running a sumpless system, however this is just a modification of the pump-driven scrubber with the pump in the display tank.
The very first step you need to do before buying, measuring, or sketching up anything, is to decide how you are going to supply your scrubber, and determine what your available flow rate is.
Available Flow
In any case, you need to measure the flow rate.
Do this step. It is critical. Do not, I repeat,
do not calculate the flow rate based on pump curves and head-feet of pressure. This may sound like a total pain in the behind, but just trust me on this one. Would you rather go through all the effort of building a scrubber, only to have problems and find out that you didn't have as much flow as you thought you did? Believe me, I've been there.
If you've been reading this thread, you will see that at some point I started making a big deal about this. The reason is that it is a big deal and I think many people don't realize that their pump does not pump at the rated flow, and in the majority of cases, it doesn't come close to the flow calculated by using a standard head-foot calculator program or table. So I have chosen to make it the #1 priority for scrubber design, hands down.
You have to know your actual flow.
For a drain fed scrubber, fill a pitcher with the water entering the sump. You will probably need to rig up a temporary pipe or routing configuration so that you can fill the container. For a pump-fed scrubber, set up the pump in a sink filled with water to the same level as your pump will be submerged, and connect the tubing required to reach the height of the connection to the horizontal slot tube, so that you mimic as best as possible the actual conditions. Backpressure created by the slot/screen is negligible unless your flow rate significantly exceeds 35 GPH per inch of slot length.
Now that you've done all this, fill the container and record the time it takes to fill it. Do this at least a dozen times. The way I do this is by using a recording device, like a digital voice recorder, and just calling out "Go" and "Stop", then afterward, playing it back and using a stopwatch to get the time intervals. You could also have someone else run the stopwatch and write down the times. Average out the times and then figure out how many gallons per hour of flow you are actually getting. If you have multiple drains, measure and extrapolate GPH for each individually, and then add together.
For instance, if you are using a 1/2 gallon pitcher, and it takes 4.5 seconds to fill it, then you would have (0.5 gallons / 4.5 seconds) x (3600 seconds / 1 hour) which would be 400 GPH.
Don't be surprised if you have a lot less flow from your pump than you thought you had. I had less than 1/2 of what I thought it was. Head-feet calculations are usually way off, because most people don't use big enough return hose or have other restrictions in the plumbing. Some of it is inherent to reef-ready aquarium design (1" drain, 3/4" return, Danner Mag-Drive 9.5 and larger pumps need 1.5" return, see a problem?). So don't feel bad. A lot of people are in your situation, but they just don't know it.
Start with a clean pump. If your pump is not clean, soak it in vinegar for 15 minutes and scrub it good. After running a scrubber for about 4-5 months, your pump flow will drop about 15%, and by 6 months, it will have dropped by
25%, so you want to know your best-case flow and build around that. It's a lot easier to start with a throttled-back clean pump and open it a little when the flow rate decreases. Figure out your system flow rate, multiply by 80%, and that will be a good starting point. But, it's not going to kill you to start at full flow, and end up with a little less over time. You might just want to clean your pump a little more often, say every 3 months. So it's up to you. Just being aware of your system conditions puts you miles ahead.
Screen Size
Once you figure out your available flow, then it's time to figure out your optimal screen dimensions.
There are 2 ways of looking at this: square inches based on length and width
dimension, and square inches based on
illuminated surface area. The latter is technically more accurate, but since most people light both sides, the
former is usually referenced.
For every gallon of water in your display tank, you need 2
total square inches of illuminated screen material. This means that if you run a screen that is vertical and lit from both sides, then you need a screen with dimensions (length times width) that is equal to the size of your tank, or
1 square inch of material per gallon. This is what you will see commonly referenced, and what I continue to reference for simplicity's sake. Double the dimensional measurement for a vertical screen, lit from only one side. Double it again for a horizontal or slanted screen.
Sizing of the screen generally does not require inclusion of the volume of water in the sump, unless you have some kind of bio-load in there, like a refugium for a recovering fish, pods, or a frag tank, etc.
So, just so we're 100% clear on this:
Vertical, lit from both sides:
1 square inch of screen material per gallon (
2 square inches of illuminated screen area per gallon)
Vertical, lit from only one side:
2 square inches of screen material per gallon (
which is also 2 square inches of illuminated screen area per gallon)
Horizontal:
4 square inches of screen material per gallon (
4 square inches of illuminated screen material per gallon). Lighting must increase by a factor of 1.5 (discussed in the lighting section). Also note that
this is a correction to what was listed on Post #1 of this thread (that post listed that a 10 x 10 screen was good for 40 gallons, instead of 25 gallons)
Screen Dimensions
So now that you know your actual flow rate AND the total size of your screen (and you need to know the total dimensional area for this part, not the total surface area), now you are ready to figure out your dimensions.
You want the flow to be as close to
35 GPH per inch of screen width as possible. You can get by with a lower flow rate, but your scrubber may not be strong enough depending on your bio-load. You can have higher flow also, which is generally not a problem as long as your screen is rough enough and you aren’t getting black slime algae (which is a sign of high nutrients, and needs more frequent cleaning until it lightens up. What you want to achieve is enough flow so that you have a full sheet of water across the screen off the bottom edge, like this:
Simply take your GPH (that you just measured) and divide by 35, and this will be your optimal screen width. Then, take that number and divide it into the gallon size of your display tank to obtain the height dimension of the screen. Use the
size of your tank, not the gallons that you think are actually in it (so do not account for volume of Live Rock, fish, decor, etc) and do not include your sump volume (unless there is significant bio-load, as previously described). The result is the total area of roughed-up screen that you want.
In general, you want to add at least one inch to the height dimension for the section of smooth screen that will be inserted into the slot pipe. Specifically, you want to allow for the distance that the screen will be inserted into the slot pipe, plus at least 1/8" of smooth screen below the slot tube to help prevent algae growth into the slot. This "one inch" is just a good rule of thumb, and should be increased depending on the diameter of your slot pipe and how far you insert the screen into the slot pipe. A little extra smooth screen at the top never hurts, as it can be trimmed off later.
The critical area, and the only area that contributes to scrubbing power,
is the roughed-up and illuminated portion of the screen. Figure out your necessary screen dimensions, then add the extra smooth section to the height dimension.