What Is Reverse Osmosis
Reverse osmosis, also known as hyperfiltration, is the finest filtration known. This process will allow the removal of particles as small as ions from a solution. Reverse osmosis is used to purify water and remove salts and other impurities in order to improve the color, taste or properties of the fluid. It can be used to purify fluids such as ethanol and glycol, which will pass through the reverse osmosis membrane, while rejecting other ions and contaminants from passing. The most common use for reverse osmosis is in purifying water. It is used to produce water that meets the most demanding specifications that are currently in place. Reverse osmosis uses a membrane that is semi-permeable, allowing the fluid that is being purified to pass through it, while rejecting the contaminants that remain. Most reverse osmosis technology uses a process known as crossflow to allow the membrane to continually clean itself. As some of the fluid passes through the membrane the rest continues downstream, sweeping the rejected species away from the membrane. The process of reverse osmosis requires a driving force to push the fluid through the membrane, and the most common force is pressure from a pump. The higher the pressure, the larger the driving force. As the concentration of the fluid being rejected increases, the driving force required to continue concentrating the fluid increases. Reverse osmosis is capable of rejecting bacteria, salts, sugars, proteins, particles, dyes, and other constituents that have a molecular weight of greater than 150-250 daltons. The separation of ions with reverse osmosis is aided by charged particles. This means that dissolved ions that carry a charge, such as salts, are more likely to be rejected by the membrane than those that are not charged, such as organics. The larger the charge and the larger the particle, the more likely it will be rejected.
Deionizer : Ion exchanger removes dissolved impurities. The purity is comparable with distilled water. A common variant contains a mixture of cation exchange resin in the acid form and anion exchange resin in the hydroxyl form inside a replaceable cartridge; ions in aqueous solution are exchanged for the elements of water by passing the solution through the mixed resin.
Is it necessary, well maybe not, you can get good fiber filters & carbon blocks up to 1 micron, that will remove a tons, which is really great water these additions are also fairly cheap as compared to the rest of the system.
Sizes & equipment;
Why do I say we need a bigger unit?
For one thing in most cases you are not talking about a lot of money up-front. Also what was posted about is also another good reason, you won’t necessary make that much water over time & you may not have enough pressure to get maximum output. This in no way means you need to get a booster pump, with your average home supply you will produce enough water, just in some cases some larger system, or very low pressure system would you want to go farther and boost your output pressure thus maximizing your unit and producing less waste water. BTW, when they say wastewater, this water is actually still really good water; it passes through the filter media & carbon block. In fact Kent recommends that you drink only the filtered water from the first two stages, using this pure water strips all of the minerals we need as humans. As to how often we need to replace filter media, use a TDS meter (Total Dissolved Solids) or usually the packages recommend replacing them according to use. I change out the first two often, then the DI & RO usually goes longer and so does the cost.
Hope this helps!
Scott A.